Year 11-12 transition pack A-Level Maths Due Thursday $1^{\text {st }}$ September 2022

Name: \qquad

You must complete all of the questions.
Make sure you understand why you are performing each calculation Answers to applied are at the end for you to mark your work.
Your work will be reviewed by your teachers on arrival into Year 12 You will be given an assessment on this content during the first few lessons

For the first parts of this booklet you will need to remember that you can simplify powers of the same base using the laws of indices:

- $a^{m} \times a^{n}=a^{m+n}$
- $a^{m} \div a^{n}=a^{m-n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $(a b)^{n}=a^{n} b^{n}$

1. Find the value of:
a) $9^{\frac{1}{2}}$
b) $9^{-\frac{1}{2}}$
c) $\left(\frac{1}{4}\right)^{\frac{1}{2}}$
d) $\left(\frac{1}{4}\right)^{-\frac{1}{2}}$
e) $\left(\frac{125}{64}\right)^{\frac{1}{3}}$
2. Rationalise the denominator of:
a) $\frac{1}{\sqrt{3}}$
b) $\frac{2}{\sqrt{3}}$
c) $\frac{3}{\sqrt{3}}$
d) $\frac{\sqrt{2}}{\sqrt{3}}$
e) $\frac{3 \sqrt{2}}{\sqrt{3}}$
3. Write the following in the form $a \sqrt{b}$ where a is an integer or a fraction, and b is an integer
a) $27^{\frac{1}{2}}$
b) $27^{-\frac{1}{2}}$
c) $\left(\frac{1}{8}\right)^{\frac{1}{2}}$
d) $\left(\frac{1}{8}\right)^{-\frac{1}{2}}$
e) $\left(\frac{125}{64}\right)^{\frac{1}{2}}$

Examples

Your turn

Find the value of:

$$
\begin{aligned}
& 5\left(\frac{343}{125}\right)^{\frac{1}{3}}=5\left(\frac{\sqrt[3]{343}}{\sqrt[3]{125}}\right)=5\left(\frac{7}{5}\right) \\
&=\frac{5 \times 7}{5} \text { \&- (you both nomedurde } \\
& \text { and denominate }
\end{aligned}
$$

$$
\frac{1}{3}\left(\frac{1000}{729}\right)^{-\frac{2}{3}}=\frac{1}{3}\left(\frac{729}{1000}\right)^{\frac{2}{3}}=\frac{1}{3}\left(\frac{\sqrt[3]{729}}{\sqrt{1000}}\right)^{2}
$$

$$
=\frac{1}{3}\left(\frac{9}{10}\right)^{2}
$$

$$
=\frac{1}{3}\left(\frac{81}{100}\right)=\frac{1 \times 81}{3 \times 100}=\frac{27}{100}
$$

Write in the form $a \sqrt{b}$:
$5(10)^{-\frac{1}{2}}=5\left(\frac{1}{10^{1 / 2}}\right)=5\left(\frac{1}{\sqrt{10}}\right)=\frac{5}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}}$
$\begin{aligned} &=\frac{5 \sqrt{10}}{10} \div 5 \\ &=\frac{\sqrt{10}}{2} \div 5 \\ & 11^{\frac{13}{3}}=13=12+1 \\ &=11^{\frac{12+1}{3}}=11^{4+\frac{1}{3}}=11^{4} \times 11^{1 / 3} \quad \frac{-11}{121} \frac{-1211}{22^{211}} \\ &=14621 \sqrt[3]{11} \quad \frac{122^{210}}{14641}\end{aligned}$
$5^{-\frac{1}{2}}+\sqrt{125}=\frac{1}{\sqrt{5}}+\sqrt{25 \times 5}$
$=\frac{1}{\sqrt{5}}+\sqrt{5}+5 \sqrt{5} \quad$ fadurie $\sqrt{5}$
$=\frac{\sqrt{5}}{5}+5 \sqrt{5}=\sqrt{5}\left(\frac{1}{5}+5\right)=\sqrt{5}\left(\frac{26}{5}\right)$
$\left(4\left(27^{-\frac{1}{2}}\right)+27^{\frac{1}{2}}\right)-\left(4\left(3^{-\frac{1}{2}}\right)+3^{\frac{1}{2}}\right)$
$\left[4\left(\frac{1}{\sqrt{27}}\right)+\sqrt{27}\right]-\left[4\left(\frac{1}{\sqrt{3}}\right)+\sqrt{4} \times \sqrt{3} 3\right]$
$\left[\frac{4 \sqrt{3}}{3 \sqrt{3}}+3 \sqrt{3}\right]=-\left[\frac{4 \sqrt{x}}{\sqrt{3}}+\sqrt{3}\right]$$\quad \begin{aligned} & {\left[\frac{\sqrt{3}}{3}\right] } \\ & {\left[\frac{4 \sqrt{3}}{9}+3 \sqrt{3}\right]-1\left[\frac{4 \sqrt{3}}{3}+\sqrt{3}\right] }=\frac{4 \sqrt{3}}{9}+3 \sqrt{3}-\frac{4 \sqrt{3}}{3}-\sqrt{3} \\ &=\sqrt{3}\left(\frac{4}{9}+3-\frac{4}{3}-1\right)=\frac{10}{9} \sqrt{3}\end{aligned}$

Find the value of:
$10\left(\frac{27}{1000}\right)^{\frac{1}{3}}$
$\frac{1}{5}\left(\frac{343}{1000}\right)^{-\frac{2}{3}}$

Write in the form $a \sqrt{b}$:
$15(3)^{-\frac{1}{2}}$
$17^{\frac{16}{5}}$
$7^{-\frac{1}{2}}+3 \sqrt{7}$
$\left(10\left(8^{-\frac{1}{2}}\right)+8^{\frac{1}{2}}\right)-\left(10\left(2^{-\frac{1}{2}}\right)+2^{\frac{1}{2}}\right)$

1. Write the following in index notation (e.g., $3 x^{2}$, or $\frac{4}{3} x^{-\frac{3}{2}}$ are in index notation)
a) $\sqrt[3]{x}$
b) $\frac{1}{x^{2}}$
C) $\frac{1}{\sqrt{x}}$
d) $\sqrt{a^{4}}$
e) $\frac{\sqrt{t^{7}}}{t^{3}}$
2. Write the following in index notation (e.g., $3 x^{2}+\frac{4}{3} x^{-\frac{3}{2}}$ is in index notation)
a) $a^{5}+\frac{1}{a^{2}}$
b) $3 y^{5}-\frac{4}{t^{3}}$
c) $\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}$
d) $\frac{3}{x}-\frac{2}{y}+\sqrt{x}$
e) $\sqrt[3]{x}+\frac{2}{y^{2}}$

Examples
Write the following in index notation:

$$
\begin{aligned}
& \frac{5}{10 \sqrt{x}}=\frac{5}{10} \times \frac{1}{\sqrt{x}}=\frac{1}{2} \times \frac{1}{x^{1 / 2}}=\frac{1}{2} \times x^{-1 / 2}=\frac{1}{2} x^{-1 / 2} \\
& \sqrt{x}=x^{1 / 2} \quad \frac{1}{2} n^{2} x^{-1 / 2} \\
& \begin{aligned}
\frac{10 \sqrt[3]{y}}{5 y^{2}}=\frac{10}{5} \times \frac{\sqrt[3]{y}}{y^{2}} & =\frac{1}{2} \times \frac{y^{1 / 3}}{y^{2}} \\
& =\frac{1}{2} \times y^{1 / 3-2}=\frac{1}{2} y^{-\frac{5}{3}}
\end{aligned}
\end{aligned}
$$

$$
\frac{3 \sqrt[3]{x}+1-x^{2}}{9 x}=\frac{3 x^{1 / 3}+1-x^{2}}{9 x}
$$

$$
=\frac{3 x^{1 / 3} 9 x}{9 x}+\frac{1}{9 x}-\frac{x^{2}}{9 x}
$$

$$
=\frac{3}{9} \times \frac{x^{1 / 3}}{x}+\frac{1}{a} \times \frac{1}{x}-\frac{1}{a} \times \frac{x^{2}}{x}
$$

$$
x \sqrt{x}+\frac{1}{x^{2}}(\sqrt[3]{x})
$$

$$
\begin{aligned}
& =\frac{1}{3} x^{-2 / 3}+\frac{1}{9} x^{-1}-\frac{1}{9} x \\
& =x \times x^{1 / 2}+x^{-2}<x^{1 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& =x^{1+1 / 2}+x^{-2+1 / 3} \\
& =x^{3 / 2}+x^{-5 / 3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{8 x^{\frac{1}{2}} \times 24 x^{\frac{3}{2}}}{16 x} & =\frac{8 \times x^{1 / 2} \times 24 \times x^{3 / 2}}{16 \times x} \\
& =\frac{8 \times 24 \times x^{1 / 2} \times x^{3 / 2}}{16 \times x} \\
& =\frac{8 \times 24^{0} \times x^{1 / 2} \times x^{3 / 2}}{16} \\
& =\frac{24}{2} \times \frac{x^{4 / 2} x}{x}=12 \times x=12 x
\end{aligned}
$$

$$
\frac{x^{\frac{2}{3}}}{\frac{2}{3}}+\frac{x^{-\frac{1}{3}}}{-\frac{1}{3}}=x^{\frac{2}{3}} \div \frac{2}{3}+x^{-1 / 3} \div-1 / 3
$$

$$
=x^{2 / 3} \times \frac{3}{2}+x^{-1 / 3} \times-\frac{3}{1}
$$

$$
=\frac{3}{2} x^{2 / 3}-3 x^{-1 / 3}
$$

Your turn

Write the following in index notation:

$\frac{4}{20 x}$
$\frac{64 y^{2}}{8 \sqrt[3]{y}}$
$\frac{100 \sqrt{x}+20 x^{4}+2}{5 x^{3}}$
$x \sqrt[3]{x}+\frac{1}{x^{3}}\left(x^{2}\right)$
$\frac{40 x^{\frac{1}{2}} \times 5 x^{-\frac{5}{2}}}{1000 x}$
$\frac{x^{\frac{1}{3}}}{\frac{1}{3}}+\frac{x^{-\frac{2}{3}}}{-\frac{2}{3}}$

1. Write the following expressions in index form without brackets or fractional indices
a) $(3 x)^{2}$
b) $(3+x)^{2}$
c) $(25 x)^{\frac{1}{2}}$
d) $(4 x)^{2}-5 x^{2}$
e) $(4 x)^{\frac{1}{2}}-5 \sqrt{x}$
2. Expand, and then write the following in index notation (e.g., $3 x^{2}+\frac{4}{3} x^{-\frac{3}{2}}$ is in index notation)
a) $\left(x^{2}+x\right)^{2}$
b) $(x+\sqrt{x})^{2}$
c) $\left(x+\frac{1}{x}\right)^{2}$
d) $\left(3 x+\frac{2}{x}\right)^{2}$
e) $\left(3 x^{2}+\frac{2}{x^{3}}\right)^{2}$

Examples

Expand, and then write the following in index

 notation as a sum of three different terms$$
\begin{aligned}
\frac{(3 \sqrt{x}+2)^{2}}{\sqrt{x^{3}}} & =\frac{(3 \sqrt{x}+2)(3 \sqrt{x}+2)}{x^{1 / 3}} \\
& =9 x+6 \sqrt{x}+6 \sqrt{x}+4 \\
& =\frac{9 x x^{1}+x^{1 / 2}}{2^{1 / 3}} \frac{12 x^{1 / 2}}{x^{1 / 3}}+\frac{4}{x^{1 / 3}}=9 x^{2 / 3}+12 x^{1 / 6}+4 x^{-1 / 3}
\end{aligned}
$$

Write the following expressions without using brackets or fractional and negative indices

$$
\begin{aligned}
& \begin{array}{l}
3 x^{-1}=\frac{3}{x}(3 x)^{-1}=\frac{1}{3 x} \quad \frac{1}{3} x^{-1}=\frac{1}{3 x} \quad\left(\frac{1}{3} x\right)^{-1}=\left(\frac{x}{x}\right)^{-1}=\frac{3}{x}, ~
\end{array} \\
& 3 x^{-2}=\frac{3}{x^{2}}\left(\frac{1}{x^{2}}(3 x)^{-2}=\frac{1}{9 x^{2}}(3 x)^{2}=9 x^{2}\left(\frac{1}{3} x\right)^{-2}=\left(\frac{x}{5}\right)^{-2} \times \frac{9}{x^{2}}\right. \\
& 3 x^{\frac{1}{2}}=3 \sqrt{x}(3 x)^{\frac{1}{2}}=\sqrt{3 x} \underset{3 \times \frac{1}{\sqrt{x}}}{3 x^{-\frac{1}{2}}}=\frac{3}{\sqrt{x}} \quad(3 x)^{-\frac{1}{2}}=\frac{1}{\sqrt{3 x}} \\
& \frac{1}{2} x^{\frac{1}{2}}=\frac{1}{2} \sqrt{x}\left(\frac{1}{2} x\right)^{\frac{1}{2}}=\frac{\sqrt{x}}{\sqrt{2}} \frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}\left(\frac{1}{2} x\right)^{-\frac{1}{2}}=\left(\frac{x}{2}\right)^{-1 / 2}=\frac{\sqrt{2}}{\sqrt{x}} \\
& \left(\frac{x}{2}\right)_{1}^{2} \sqrt{\frac{1}{2}} \times \frac{1}{\sqrt{x}} \\
& \frac{3}{2} x^{\frac{1}{2}}<\frac{3}{2} \sqrt{x}\left(\frac{3}{2} x\right)^{\frac{1}{2}} \cdot \frac{\sqrt{x}}{\sqrt{2}} \frac{3}{2} x^{-\frac{1}{2}}=\frac{3}{2 \sqrt{x}}\left(\frac{3}{2} x\right)^{-\frac{1}{2}}=\left(\frac{3 x}{2}\right)^{-1 / 2} \\
& \text { or } \frac{\sqrt{6 x}}{2} \\
& =\frac{\sqrt{2}}{\sqrt{3 x}} \\
& (125 x)^{\frac{1}{3}}+125 x^{\frac{1}{3}}+(125 x)^{-\frac{1}{3}} \\
& \begin{aligned}
-\sqrt[3]{125 x}+125^{2} \sqrt{x}+\frac{1}{\sqrt{125 x}} & =5^{3} \sqrt{x}+125^{3} \sqrt{x}+\frac{1}{5 \sqrt[3]{x}} \\
& =130^{3} \sqrt{x}+\frac{1}{5 \sqrt[3]{x}}
\end{aligned} \\
& \left(\frac{1}{4} x\right)^{2}+\left(\frac{2}{9} x\right)^{-1}-(5 x)^{-1} \\
& \left(\frac{x}{4}\right)^{2}+\left(\frac{2 x}{9}\right)^{-1}-\frac{1}{5 x}=\frac{x^{2}}{16}+\frac{9}{2 x}-\frac{1}{5 x} \\
& \left(\frac{2}{4 x}\right)^{-1}-\frac{5 x}{2}=\frac{x^{2}}{10}+\frac{1}{x}\left(\frac{9}{2}-\frac{1}{5}\right)=\frac{x^{2}}{16}+\frac{43}{10 x} \\
& \left(\frac{2}{5 x}\right)^{-1}=\frac{5 x}{2} \\
& 100 x^{\frac{1}{2}}+(100 x)^{\frac{1}{2}}+(100 x)^{-\frac{1}{2}} \\
& \left(\frac{1}{4} x\right)^{-2}+\left(\frac{5}{7} x\right)^{-1}+(49 x)^{\frac{1}{2}} \\
& \left(\frac{3}{2 x}\right)^{-1}
\end{aligned}
$$

Warm up

Solve the following simultaneous equations

$$
\begin{aligned}
x+y & =4 \\
4 y^{2}-x^{2} & =12
\end{aligned}
$$

Example

The figure shows the design of a fruit juice carton with capacity of $1000 \mathrm{~cm}^{3}$. The design of the carton is that of a closed cuboid whose base measures xcm by 2 xcm , and its height is hcm .

Show that the area of the juice carton, $\mathrm{A} \mathrm{cm}^{2}$, is given by

(1) $A=4 x^{2}+\frac{3000}{x}$

$$
\begin{aligned}
A & =\hat{A} \times 2+(\hat{B} \times 2+(C) \times 2 \\
& =(x h) \times 2+(2 \times h) \times 2+\left(2 x^{2}\right) \times 2
\end{aligned}
$$

$$
\text { (2) } \begin{aligned}
& =2 x h+4 x h \\
& A=6 x h+4 x^{2}
\end{aligned}
$$

However, tee is no h in formula (1), but we know the copay (volume) of the carton is $1000 \mathrm{~cm}^{3}$
$V=$ width x herfut x depth
$1000=x \times h \times 2 x$ male h the shied $\quad h=\frac{1000}{2 x^{2}}$
$h=\frac{500}{x^{2}}$ or $500 x^{-2}$
(2): $A=6 x\left(\frac{500}{x^{2}}\right)+4 x^{2}$
$=\frac{3000 x}{x^{2}}+4 x^{2}$
$=\frac{3000}{x}+4 x^{2}$
$A=4 x^{2}+\frac{3000}{x}$ as required
1.

The figure above shows a solid brick, in the shape of a cuboid measuring $5 x \mathrm{~cm}$ by $x \mathrm{~cm}$ by $y \mathrm{~cm}$. The total surface area of the brick is $720 \mathrm{~cm}^{2}$.

Show that the volume of the brick, $V \mathrm{~cm}^{3}$, is given by

$$
V=300 x-\frac{25}{6} x^{3}
$$

